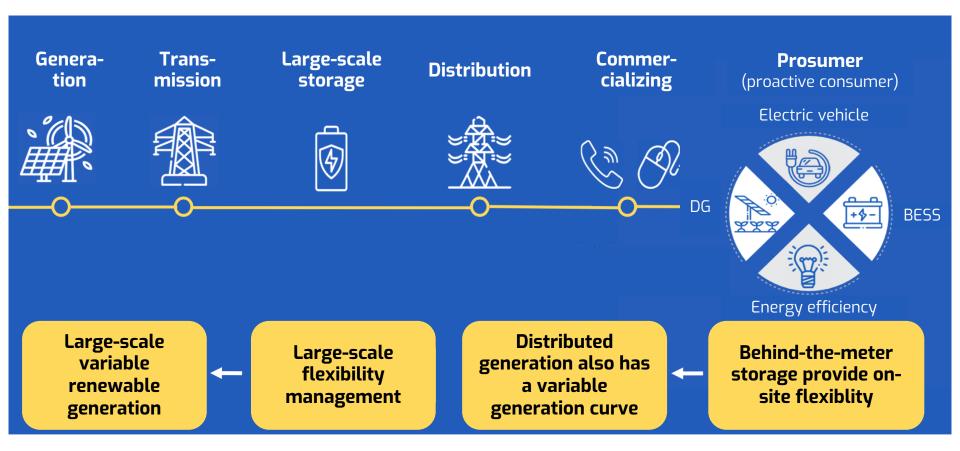
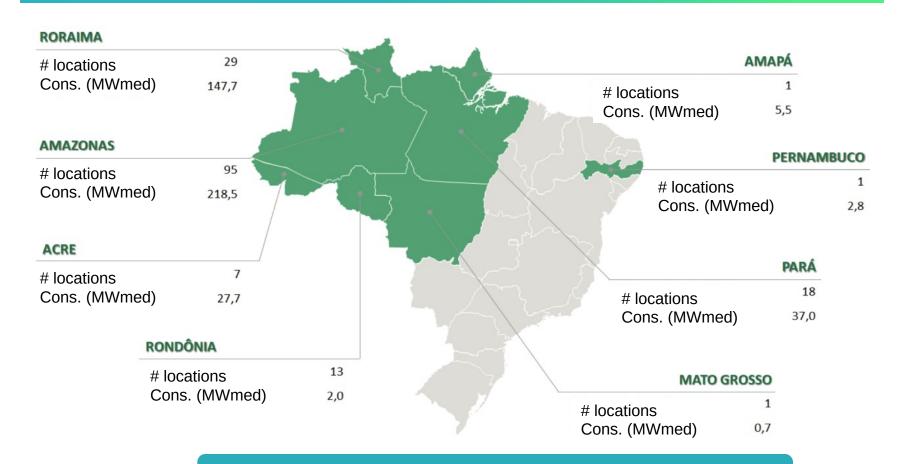


Discover new opportunities for the growing PV market in Brazil - Storage and Green Hydrogen




12/05/2022

Energy storage is becoming a key element for modernizing the electricity sector across the globe

Business proposition of energy storage in Brazil?

Energy storage will contribute to decarbonizing the energy generation in the Amazon region

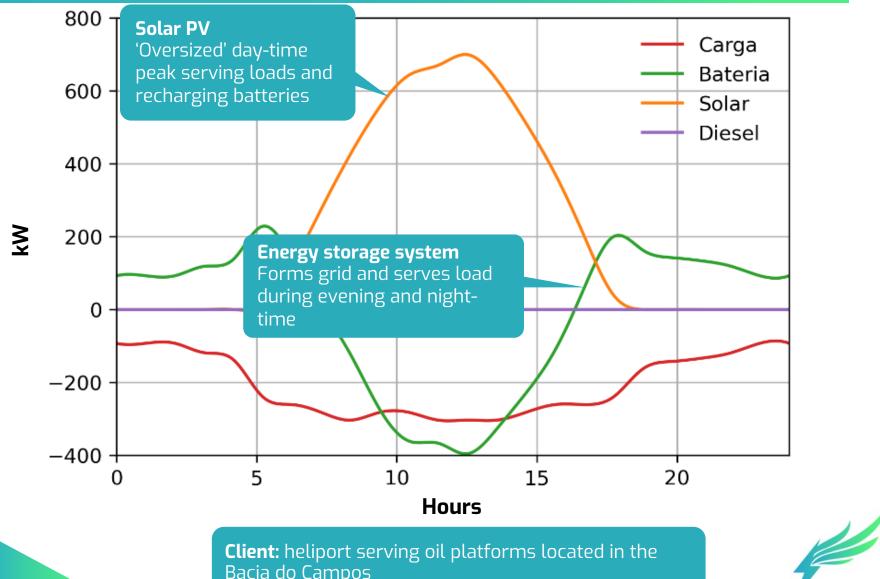
≈ 300 off-grid systems serving ≈ 3 mn people;

 97% of installed capacity are Diesel generators whose fuel is heavily subsidized (~ EUR 2 bn/yerar)

The latest 'innovation' in large scale off-grid energy generation in the Amazon region

Jaguatirica II – 140 MW natural gas turbines

Boa Vista


- **State capital** of Roraima;
- **Coordinates**: 2°49'10"**N**, 60°40'17"" **W**
- **Population**: ≈500.000

Fuel logisticts in the Amazon region (BR 174)

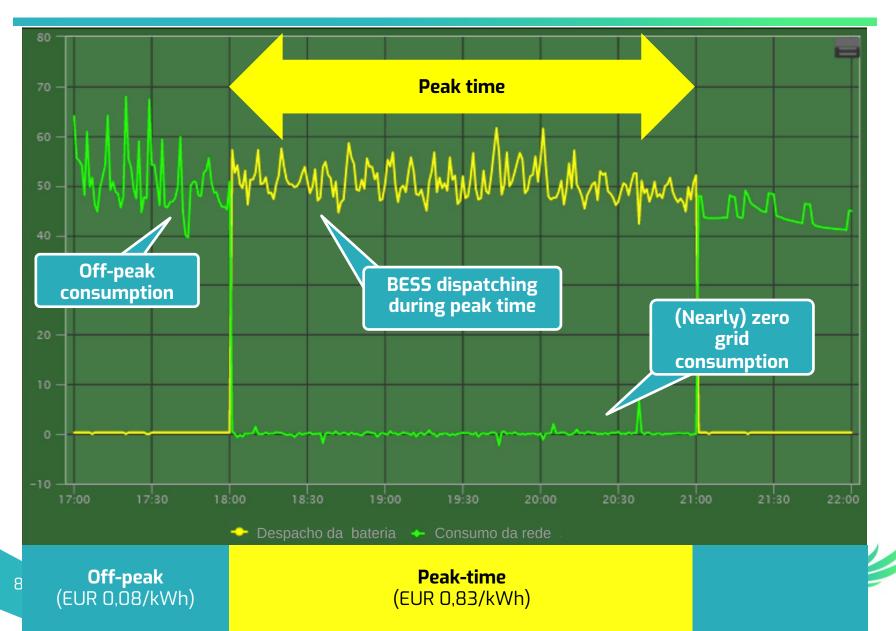
Load and generation profile of a renewable off-grid system

Bacia do Campos

Case study – Vila Restauração (state of Acre)

Solution to provide carbon-free electricity to Vila Restauração

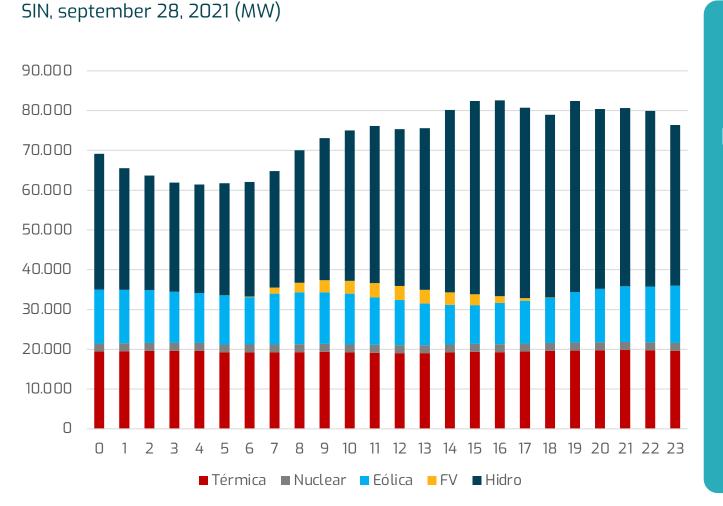
- **325 kWp** solar PV system;
- 829 kWh energy storage system using LFP batteries;


Source: Energisa, Agência Acre, Canalsolar

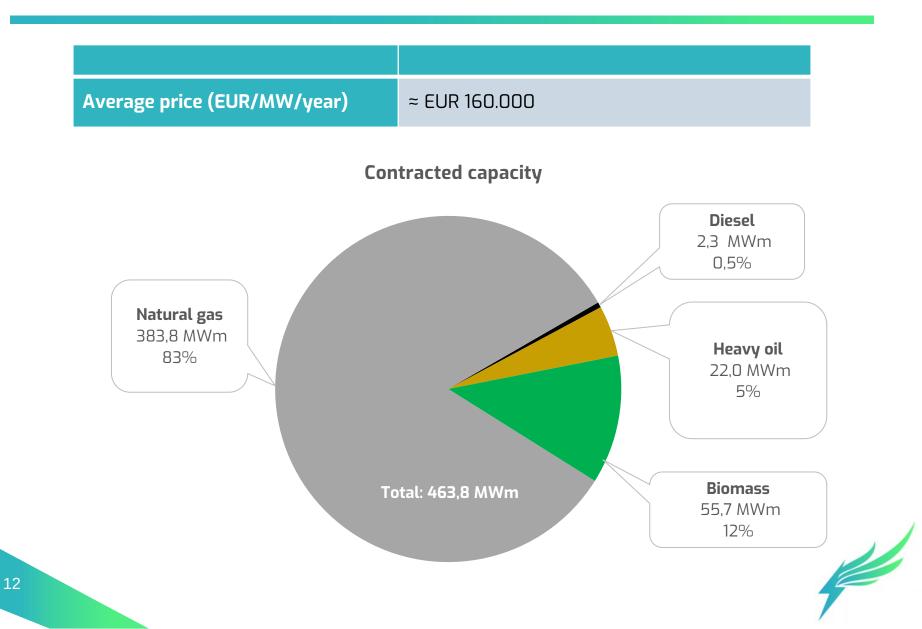
Current electricity consumption and cost

ltem	Amount	Rate	Annual cost
Contracted demand	939 kW	EUR 8,7/kW	EUR 98.174
Peak-time consumption	491 MWh/yr	EUR 831/MWh	EUR 407.432
Off-peak consumption	5.093 MWh/yr	EUR 79/MWh	EUR 401.197
Total	Deal	client data	EUR 906.804
		onsumption	

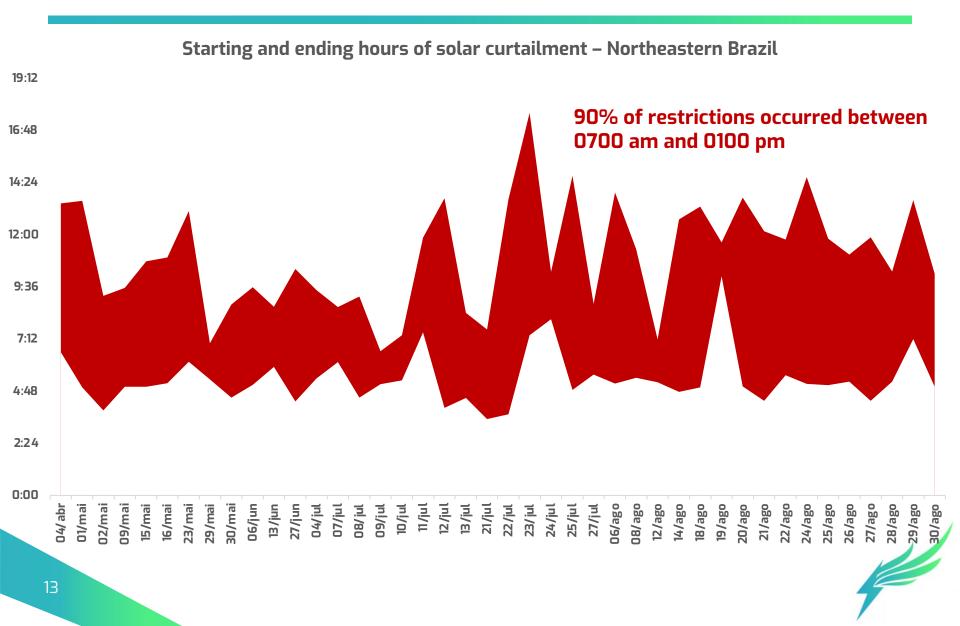
Using an energy storage system for load shifting allows to reduce electricity cost during expensive peak hours


	Prior to project		After project	
ltem	Amount	Annual cost	Amount	Annual cost
Contracted demand	939 kW	EUR 98.174	939 kW	EUR 98.174
Peak-time consumption	491 MWh/yr	EUR 407.432	35 MWh/yr	EUR 29.403
Off-peak consumption	5.093 MWh/yr	EUR 401.197	5.664 MWh/yr	EUR 446.126
Total		EUR 906.804		EUR 573.704
			37% savings	

Map of commercial and industrial electricity rates across Brazil


Electric utility	State	∆ P-OP* (BRL/MWł		
Equatorial PA	PA	2.419	•	
Cemar	MA	2.066	an IVE	
Coelba	BA	1.889	MORE ATTRACTIVE	End of the
Sulgipe	SE	1.846	ATT	
ENF	RJ	1.825		Knut p
ETO	TO	1.797		L do and
EPB	PB	1.761		man a
Enel RJ	RJ	1.688	ШN	- A
EMS	MS	1.646	LESS ATTRACTIVE	
CEAL	AL	1.618	LES ATT	
10			F	708 2.321

Today hydropower is providing flexibility and resilience to the Brazilian electricity grid



Currently the ONS is using hydroelectric power plants to match energy supply and demand. In the future, the growth of variable renewable source will require increased flexibility for grid

management

Curtailment of large-scale solar power plant located in Northeastern Brazil

In the medium-term, there will be attractive intraday and inter-day trading opportunities, especially in Northeastern Brazil

Source: CCEE

Building a business case for large-scale energy storage in Brazil

	Economic feasibility	Regulatory aspects
Short-term trading	 Could become economically feasible in Northeastern Brazil in the medium term 	 Would require significant changes to calculation methodology for short-term market price
Ancillary services	 Not feasible at current prices; Might become attractive after re-evaluation 	 Would require minor regulatory changes
Reserve capacity	 Economically feasible with current prices 	 Does require 'infra-legal' regulatory changes
Mitigate curtailment	 Contributes to business case but not viable on a stand- alone basis 	 Does not require any regulatory changes; Requires clarification of gridaccess of BESS

Selected energy storage projects in Brazil

Virtual transmission (expected for Q4 2022 / Q1 2023) -

- 60 MWh project to be installed in state of São Paulo;
 - Main goal is to relieve congestion relief in N-1 and N conditions;
- Approved in late 2021;

Solar x PV coupling (implemented) -

- 1 MWh R&D project coupled to utility-scale solar PV plant;
- Main goal is to evaluate different services energy storage can provide to large-scale solar PV plants and local distribution grid;

Offgrid (many implemented projects) -

- Rural electrification;
- Farming (irrigation);
- Mining compantes;
- 'Diesel killers'

- C&I projects (several implemented) -
- Growing number of commercial C&I projects for shopping malls, distribution centers, hotels, telecom network operators, mining companies (≈ 100 kWh up to 10 MWh);
- Main purpose: load shifting, peak shaving, backup

Tax reform and regulatory adjustments will be critical to facilitate growth of the Brazilian energy storage sector

	 65% for storage systems assembled in Brazil; 79% for imported systems; → Tax rates on storage systems and related components need to be reduced to stimulate market (and even to increase tax revenues)
Regulation	 The current regulations do not foresee energy storage and providers of storage services; There are no rules for grid connection of storage projects; Utilities are reluctant to authorize grid connections of behind-the-meter storage systems;
	 → Adequate definition of energy storage urgently needed; → Application-specific rules needed;

Muito obrigado pela atenção

Markus Vlasits Diretor/Sócio

NewCharge

Avenida Rio Branco, 404, Torre 2, Sala 1203, Centro Florianópolis – Santa Catarina – SC – Brasil CEP: 88,015-200 Fone: +55 48 3207-0443 E-mail: <u>contato@newcharge.com.br</u> Site: <u>www.newcharge.com.br</u> Siga nossas redes sociais: @newchargeenergy

Projeto em parceria com a UFSC - Agosto/202